相关文章
友情链接

电磁流量计的励磁方式及特点

直流励磁

电磁流量计在法拉第时代就采用直流励磁技术,它是利用永磁体或者直流电源给电磁流量传感器励磁绕组供电,以形成恒定的直流磁场。直流励磁技术具有方法简单可靠、受工频干扰影响很小、流体中的自感现象可以忽略不计等特点。但也存在如下问题:

直流磁场所感应的直流信号电压,容易使流过测量管的电解质液体极化,电极上得到的是极化电压和信号电压的合成信号,极化电压随温度变化发生漂移,极难分离;

随着时间的延长,电极处聚集的离子层不断加厚,引起电极间内阻增加,流量信号减弱,即使电极采用极化电势很小的铂、金等贵重金属或其合金材料,常常也存在微弱的极化电势,同时仪表的制造成本也较高;

直流放大器的零点漂移、噪声和稳定性问题难以获得很好解决,特别是在小流量测量时,信号放大器的直流稳定度难以保证。

如今直流励磁技术仅在原子能工业中用于电导率极高,而又不产生极化效应的液态金属流量的测量。

交流励磁

所产生的磁场为正弦波交变磁场,能够基本上消除电极表面的极化现象,大大降低直流干扰漂移对测量的影响;

流量信号为工频正弦波信号,易于放大处理;

励磁频率高,测量反映迅速,适用于测量浆液和脉动流。

因电磁感应产生的正交干扰,该干扰信号相位比流量信号滞后90°;

励磁信号频率越高,正交干扰越大,并且,正交干扰与流量信号无关,即使流量为零,该干扰依然存在;

电磁感应产生的同相干扰,该干扰信号同时出现在两个电极上,频率和相位与流量信号一致,幅度大小与流量无关,与励磁频率的平方成正比;

由于交流励磁的电磁感应,磁路、测量管和流体将产生涡流损失和磁滞损失,仪器功率损耗增加。

低频矩形波励磁

随着20世纪70年代集成电路和同步采样技术的发展,技术应运而生,直到今天仍然在电磁流量计中广泛使用。为了抑制工频干扰,低频矩形波励磁它的频率通常为工频的偶数分之一(一般为1/2到1/32),在半个同期内,磁场是一恒定的直流磁场,从整个时间过程看,又是一个交变的磁场,是兼顾直流励磁和交流励磁两者优点的技术,其主要特点有:

能消除直流励磁引起的极化现象;

能避免正弦波交流信号带来的正交干扰;

能抑制交流磁场在管壁和流体内产生的涡电流;

基本消除分布电容引起的工频干扰。

三值低频矩形波励磁

三值低频矩形波励磁和低频矩形波励磁一样,零点稳定性交好了,但响应速度变慢;另外测量浆液性流体时,会产生浆液噪声,使输出大幅波动,该尖状干扰噪声与励磁频率成反比。

三值低频矩形波励磁技术是在低频矩形波励磁技术的基础上,为了使电磁流量计更稳定而提出的一种励磁技术,其最大的特点就是过零时动态校正零点,有效地消除了流量信号的零点噪声,因而具有更优良的零点稳定性。三值低频矩形波励磁频率一般采用工频的1/8,通过正一零一负一零的周期性采样和处理,消除了零点噪声、工频干扰、极化电势等,同时进一步降低励磁功耗,使电磁流量测量仪更小型化。

高频矩形波励磁

针对浆液流体测量和高速响应性,应用高速控制、采样和存储技术,部分厂家研制出相对于低频(1/8~1/32的工频)的高频矩形波励磁,励磁频率一般在100Hz左右,医学上测量人体的血液流量测量仪可达400Hz,通过数据采集和软件处理来消除尖状干扰噪声,以改善浆液测量和高速响应的性能。高速矩形波励磁会失掉一些低频矩形波励磁的零点稳定性,只能适合特定的场合,同时,高频励磁引起传感器磁路的涡流损失和磁滞损失增加,因此磁性材料选择和磁路结构设计要求要高一些。

双频矩形波励磁